Dense gas in low-metallicity galaxies

Author:

Braine J.,Shimajiri Y.,André P.,Bontemps S.,Gao Yu,Chen Hao,Kramer C.

Abstract

Stars form out of the densest parts of molecular clouds. Far-IR emission can be used to estimate the star formation rate (SFR) and high dipole moment molecules, typically HCN, trace the dense gas. A strong correlation exists between HCN and far-IR emission, with the ratio being nearly constant, over a large range of physical scales. A few recent observations have found HCN to be weak with respect to the far-IR and CO in subsolar metallicity (low-Z) objects. We present observations of the Local Group galaxies M 33, IC 10, and NGC 6822 with the IRAM 30 m and NRO 45 m telescopes, greatly improving the sample of low-Z galaxies observed. HCN, HCO+, CS, C2H, and HNC have been detected. Compared to solar metallicity galaxies, the nitrogen-bearing species are weak (HCN, HNC) or not detected (CN, HNCO, N2H+) relative to far-IR or CO emission. HCO+ and C2H emission is normal with respect to CO and far-IR. While 13CO is the usual factor 10 weaker than 12CO, C18O emission was not detected down to very low levels. Including earlier data, we find that the HCN/HCO+ ratio varies with metallicity (O/H) and attribute this to the sharply decreasing nitrogen abundance. The dense gas fraction, traced by the HCN/CO and HCO+/CO ratios, follows the SFR but in the low-Z objects the HCO+ is much easier to measure. Combined with larger and smaller scale measurements, the HCO+ line appears to be an excellent tracer of dense gas and varies linearly with the SFR for both low and high metallicities.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3