The origin of two X-class flares in active region NOAA 12673

Author:

Verma MeetuORCID

Abstract

Flare-prolific active region NOAA 12673 produced consecutive X2.2 and X9.3 flares on the 6 September 2017. To scrutinize the morphological, magnetic, and horizontal flow properties associated with these flares, a seven-hour time series was used consisting of continuum images, line-of-sight and vector magnetograms, and 1600 Å UV images. These data were acquired with the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA). The white-light flare emission differed for both flares, while the X2.2 flare displayed localized, confined flare kernels, the X9.3 flare exhibited a two-ribbon structure. In contrast, the excess UV emission exhibited a similar structure for both flares, but with larger areal extent for the X9.3 flare. These two flares represented a scenario in which the first confined flare acted as precursor, setting up the stage for the more extended flare. Difference maps for continuum and magnetograms revealed locations of significant changes, that is, penumbral decay and umbral strengthening. The curved magnetic polarity inversion line in the δ-spot was the fulcrum of most changes. Horizontal proper motions were computed using the differential affine velocity estimator for vector magnetograms (DAVE4VM). Persistent flow features included (1) strong shear flows along the polarity inversion line, where the negative, parasitic polarity tried to bypass the majority, positive-polarity part of the δ-spot in the north, (2) a group of positive-polarity spots, which moved around the δ-spot in the south, moving away from the δ-spot with significant horizontal flow speeds, and (3) intense moat flows partially surrounding the penumbra of several sunspots, which became weaker in regions with penumbral decay. The enhanced flare activity has its origin in the head-on collision of newly emerging flux with an already existing regular, α-spot. Umbral cores of emerging bipoles were incorporated in its penumbra, creating a δ-configuration with an extended polarity inversion line, as the parasitic umbral cores were stretched while circumventing the majority polarity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3