Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport

Author:

Reid Hamish A. S.ORCID,Kontar Eduard P.ORCID

Abstract

Context. Solar type III radio bursts contain a wealth of information about the dynamics of electron beams in the solar corona and the inner heliosphere; this information is currently unobtainable through other means. However, the motion of different regions of an electron beam (front, middle, and back) have never been systematically analysed before. Aims. We characterise the type III burst frequency-time evolution using the enhanced resolution of LOFAR (LOw Frequency ARray) in the frequency range 30–70 MHz and use this to probe electron beam dynamics. Methods. The rise, peak, and decay times with a ~0.2 MHz spectral resolution were defined for a collection of 31 type III bursts. The frequency evolution was used to ascertain the apparent velocities of the front, middle, and back of the type III sources, and the trends were interpreted using theoretical and numerical treatments. Results. The type III time profile was better approximated by an asymmetric Gaussian profile and not an exponential, as was used previously. Rise and decay times increased with decreasing frequency and showed a strong correlation. Durations were shorter than previously observed. Drift rates from the rise times were faster than from the decay times, corresponding to inferred mean electron beam speeds for the front, middle, and back of 0.2, 0.17, 0.15 c, respectively. Faster beam speeds correlate with shorter type III durations. We also find that the type III frequency bandwidth decreases as frequency decreases. Conclusions. The different speeds naturally explain the elongation of an electron beam in space as it propagates through the heliosphere. The expansion rate is proportional to the mean speed of the exciter; faster beams expand faster. Beam speeds are attributed to varying ensembles of electron energies at the front, middle, and back of the beam.

Funder

Science and Technology Facilities Council

Royal Society

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3