Searching for the largest bound atoms in space

Author:

Emig K. L.ORCID,Salas P.ORCID,de Gasperin F.ORCID,Oonk J. B. R.,Toribio M. C.ORCID,Mechev A. P.ORCID,Röttgering H. J. A.,Tielens A. G. G. M.

Abstract

Context. Radio recombination lines (RRLs) at frequencies ν <  250 MHz trace the cold, diffuse phase of the interstellar medium, and yet, RRLs have been largely unexplored outside of our Galaxy. Next-generation low-frequency interferometers such as LOFAR, MWA, and the future SKA will, with unprecedented sensitivity, resolution, and large fractional bandwidths, enable the exploration of the extragalactic RRL universe. Aims. We describe methods used to (1) process LOFAR high band antenna (HBA) observations for RRL analysis, and (2) search spectra for RRLs blindly in redshift space. Methods. We observed the radio quasar 3C 190 (z ≈ 1.2) with the LOFAR HBA. In reducing these data for spectroscopic analysis, we placed special emphasis on bandpass calibration. We devised cross-correlation techniques that utilize the unique frequency spacing between RRLs to significantly identify RRLs in a low-frequency spectrum. We demonstrate the utility of this method by applying it to existing low-frequency spectra of Cassiopeia A and M 82, and to the new observations of 3C 190. Results. Radio recombination lines have been detected in the foreground of 3C 190 at z = 1.12355 (assuming a carbon origin) owing to the first detection of RRLs outside of the local universe (first reported in A&A, 622, A7). Toward the Galactic supernova remnant Cassiopeia A, we uncover three new detections: (1) stimulated Cϵ transitions (Δn = 5) for the first time at low radio frequencies, (2) Hα transitions at 64 MHz with a full width at half-maximum of 3.1 km s−1 the most narrow and one of the lowest frequency detections of hydrogen to date, and (3) Cα at vLSR ≈ 0 km s−1 in the frequency range 55–78 MHz for the first time. Additionally, we recover Cα, Cβ, Cγ, and Cδ from the −47 km s−1 and −38 km s−1 components. In the nearby starburst galaxy M 82, we do not find a significant feature. With previously used techniques, we reproduce the previously reported line properties. Conclusions. RRLs have been blindly searched and successfully identified in Galactic (to high-order transitions) and extragalactic (to high redshift) observations with our spectral searching method. Our current searches for RRLs in LOFAR observations are limited to narrow (<100 km s−1) features, owing to the relatively small number of channels available for continuum estimation. Future strategies making use of a wider band (covering multiple LOFAR subbands) or designs with larger contiguous frequency chunks would aid calibration to deeper sensitivities and broader features.

Funder

NWO

SURF Cooperative

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovery of Hydrogen Radio Recombination Lines at z = 0.89 toward PKS 1830-211;The Astrophysical Journal;2023-02-01

2. The LOFAR Two-metre Sky Survey;Astronomy & Astrophysics;2022-02-25

3. The First Large Absorption Survey in H i (FLASH): I. Science goals and survey design;Publications of the Astronomical Society of Australia;2022

4. The LOFAR LBA Sky Survey;Astronomy & Astrophysics;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3