Solar Hα features with hot onsets

Author:

Rutten Robert J.,Rouppe van der Voort Luc H. M.,De Pontieu Bart

Abstract

Even in quiet areas underneath coronal holes the solar chromosphere contains ubiquitous heating events. They tend to be small scale and short lived, hence difficult to identify. Here we do not address their much-debated contribution to outer-atmosphere heating, but their aftermaths. We performed a statistical analysis of high-resolution observations in the Balmer Hα line to suggest that many slender dark Hα fibrils spreading out from network represent cooling gas that outlines tracks of preceding rapid type II spicule events or smaller similar but as yet unresolved heating agents in which the main gas constituent, hydrogen, ionizes at least partially. Subsequent recombination then causes dark Hα fibrils enhanced by nonequilibrium overopacity. We suggest that the extraordinary fibrilar appearance of the Hα chromosphere around network results from intermittent, frequent small-scale prior heating.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preliminary Discussion on the Current Sheet;The Astrophysical Journal;2024-03-01

2. 1.5D non-LTE spectral synthesis of a 3D filament and prominence simulation;Astronomy & Astrophysics;2023-02

3. Modeling of chromospheric features and dynamics in solar plage;Advances in Space Research;2023-02

4. The quiet sun at mm wavelengths as seen by ALMA;Frontiers in Astronomy and Space Sciences;2022-10-11

5. Formation and heating of chromospheric fibrils in a radiation-MHD simulation;Astronomy & Astrophysics;2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3