Jupiter formed as a pebble pile around the N2 ice line

Author:

Bosman A. D.,Cridland A. J.,Miguel Y.

Abstract

Context. The region around the H2O ice line, due to its higher surface density, seems to be the ideal location to form planets. The core of Jupiter, as well as the cores of close-in gas giants are therefore thought to form in this region of the disk. Nevertheless, constraining the formation location of individual planets has proven to be difficult. Aims. We aim to use the nitrogen abundance in Jupiter, which is around four times solar, in combination with Juno constraints on the total mass of heavy elements in Jupiter to narrow down its formation scenario. Methods. Different pathways of enrichment of the atmosphere of Jupiter are considered, such as the accretion of enriched gas, pebbles, and planetesimals, and their implications for the oxygen abundance of Jupiter are discussed. Results. The super-solar nitrogen abundance in Jupiter necessitates the accretion of extra N2 from the proto-solar nebula. The only location of the disk where this can happen is outside or just inside the N2 ice line. These constraints favor a pebble accretion origin of Jupiter, from the perspective of composition and planet formation. We predict that Jupiter’s oxygen abundance is between 3.6 and 4.5 times solar.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3