MWC 656 is unlikely to contain a black hole

Author:

Janssens S.ORCID,Shenar T.,Degenaar N.,Bodensteiner J.ORCID,Sana H.ORCID,Audenaert J.ORCID,Frost A. J.

Abstract

Contact. MWC 656 was reported to be the first known Be star with a black-hole (BH) companion on a 60 d period. The mass of the proposed BH companion is estimated to be between 4 and 7 M. This estimate is based on radial velocity (RV) measurements derived from the Fe IIλ4583 emission line of the Be star disc and from the He IIλ4686 emission line, assumed to be formed in a disc around the putative BH. Aims. Using new high-resolution spectroscopic data, we investigate whether MWC 656 truly contains a BH. Methods. We used the cross-correlation method to calculate the RVs of both the Be star and the He IIλ4686 emission line to derive a new orbital solution. We also used a spectral disentangling method to look for the spectral signature of a companion. Results. We derived an orbital period of 59.028 ± 0.011 d and a mass ratio of q = MHe II/MBe = 0.12 ± 0.03, much lower than the previously reported value of q = 0.41 ± 0.07. By adopting a mass for the Be star of MBe = 7.8 ± 2.0 M, the mass of the companion is 0.94 ± 0.34 M. For the upper limit of MBe = 16 M and q = 0.15, the mass of the companion is 2.4 M. Performing the disentangling on mock spectra shows that the spectral signature of a non-degenerate stellar companion with such a low mass cannot be retrieved using our data. Conclusions. Our measurements do not support the presence of a BH companion in MWC 656. Rather, the derived upper limit on the mass of the companion indicates that it is either a neutron star, a white dwarf, or a hot helium star. Far-UV data will aid in rejecting or confirming a hot helium-star companion.

Funder

FWO

European Research Council

Marie Skłodowska-Curie

KU Leuven Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Population synthesis of Be X-ray binaries: metallicity dependence of total X-ray outputs;Monthly Notices of the Royal Astronomical Society;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3