Unravelling the post-collision properties of the Cartwheel galaxy: A MUSE exploration of its bar and inner region

Author:

Mondal ChayanORCID,Barway SudhanshuORCID

Abstract

Aims. We aim to investigate the characteristics of the bar and inner disc in the collisional ring galaxy Cartwheel. Methods. We used integral field unit (IFU) observations from the Multi-Unit Spectroscopic Explorer (MUSE) of the Very Large Telescope (VLT) to investigate the stellar kinematics, age, and nature of ionised gas in the inner region of the Cartwheel galaxy. We produced stellar line of sight velocity (V), velocity dispersion (σ), h3 velocity moment, stellar population age, and emission-line maps of the galaxy using the Galaxy IFU Spectroscopy Tool (GIST) pipeline. Results. The observed nature of the intensity, V, and σ profiles together support the existence of a stellar bar, as earlier revealed from near-infrared (NIR) Ks-band imaging. A weak correlation between V/σ and h3 is found within the bar radius, providing more kinematic evidence for a stellar bar that survived the drop-through collision. The overall weak anti-correlation between V/σ and h3 in the disc implies that the stellar orbits in the disc are less stable, which might be due to the impact of the collision. The mass-weighted age map of the galaxy shows that the stellar populations in the bar region are relatively old, with an increasing gradient from the bar edge to the centre, further evidence that the bar was present before the galaxy underwent collision. Using a BPT diagram, we analysed a central unresolved source detected earlier with NIR imaging and do not find evidence of an active galactic nucleus. Our findings signify the preservation of the pre-collisional structures in the inner region of the Cartwheel, an important point to note when attempting to determine the evolution of collisional galaxy systems, particularly when investigating pre-collisional central regions in theoretical studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3