Probing dark energy with tomographic weak-lensing aperture mass statistics

Author:

Martinet NicolasORCID,Harnois-Déraps Joachim,Jullo Eric,Schneider Peter

Abstract

We forecast and optimize the cosmological power of various weak-lensing aperture mass (Map) map statistics for future cosmic shear surveys, including peaks, voids, and the full distribution of pixels (1D Map). These alternative methods probe the non-Gaussian regime of the matter distribution, adding complementary cosmological information to the classical two-point estimators. Based on the SLICS and cosmo-SLICS N-body simulations, we build Euclid-like mocks to explore the S8 − Ωm − w0 parameter space. We develop a new tomographic formalism that exploits the cross-information between redshift slices (cross-Map) in addition to the information from individual slices (auto-Map) probed in the standard approach. Our auto-Map forecast precision is in good agreement with the recent literature on weak-lensing peak statistics and is improved by ∼50% when including cross-Map. It is further boosted by the use of 1D Map that outperforms all other estimators, including the shear two-point correlation function (γ-2PCF). When considering all tomographic terms, our uncertainty range on the structure growth parameter S8 is enhanced by ∼45% (almost twice better) when combining 1D Map and the γ-2PCF compared to the γ-2PCF alone. We additionally measure the first combined forecasts on the dark energy equation of state w0, finding a factor of three reduction in the statistical error compared to the γ-2PCF alone. This demonstrates that the complementary cosmological information explored by non-Gaussian Map map statistics not only offers the potential to improve the constraints on the recent σ8–Ωm tension, but also constitutes an avenue to understanding the accelerated expansion of our Universe.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ray-tracing versus Born approximation in full-sky weak lensing simulations of the MillenniumTNG project;Monthly Notices of the Royal Astronomical Society;2024-08-23

2. Constraining modified gravity with weak-lensing peaks;Monthly Notices of the Royal Astronomical Society;2024-08-15

3. Accurate kappa reconstruction algorithm for masked shear catalog;Physical Review D;2024-06-20

4. CSST WL preparation I: forecast the impact from non-Gaussian covariances and requirements on systematics control;Monthly Notices of the Royal Astronomical Society;2023-11-20

5. mglens: Modified gravity weak lensing simulations for emulation-based cosmological inference;Monthly Notices of the Royal Astronomical Society;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3