Photoionisation modelling of the X-ray emission line regions within the Seyfert 2 AGN NGC 1068

Author:

Grafton-Waters S.ORCID,Branduardi-Raymont G.,Mehdipour M.,Page M.,Bianchi S.,Behar E.,Symeonidis M.

Abstract

Aims. We investigate the photoionised X-ray emission line regions (ELRs) within the Seyfert 2 galaxy NGC 1068 to determine if there are any characteristic changes between observations taken 14 years apart. Methods. We compared XMM-Newton observations collected in 2000 and 2014, simultaneously fitting the reflection grating spectrometer and EPIC-pn spectra of each epoch, for the first time, with the photoionisation model, PION, in SPEX. Results. We find that four PION components are required to fit the majority of the emission lines in the spectra of NGC 1068, with log ξ = 1−4, log NH >  26 m−2, and vout = −100 to −600 km s−1 for both epochs. Comparing the ionisation state of the components shows almost no difference between the two epochs, while there is an increase in the total equivalent column density. To estimate the locations of these plasma regions from the central black hole, we compare distance methods, excluding the variability arguments as there is no spectral change between observations. Although the methods are unable to constrain the distances for each plasma component, the locations are consistent with the narrow line region, with the possibility of the higher ionised component being part of the broad line region; we cannot conclude this for certain, but the photoionisation modelling does suggest this is possible. In addition, we find evidence for emission from collisionally ionised plasma, while previous analysis had suggested that collisional plasma emission was unlikely. However, although PION is unable to account for the Fe XVII emission lines at 15 and 17 Å, we do not rule out that photoexcitation is a valid processes to produce these lines as well. Conclusions. NGC 1068 has not changed, both in terms of the observed spectra or from our modelling, within the 14 year time period between observations. This suggests that the ELRs are fairly static relative to the 14 year time frame between observations, or there is no dramatic change in the spectral energy distribution, resulting from a lack of black hole variability.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3