Cyclotron line formation by reflection on the surface of a magnetic neutron star

Author:

Kylafis N. D.,Trümper J. E.,Loudas N. A.

Abstract

Context. Accretion onto magnetic neutron stars results in X-ray spectra that often exhibit a cyclotron resonance scattering feature (CRSF) and, sometimes, higher harmonics of it. Two places are suspect for the formation of a CRSF: the surface of the neutron star and the radiative shock in the accretion column. Aims. Here we explore the first possibility: reflection at the neutron-star surface of the continuum produced at the radiative shock. It has been proposed that for high-luminosity sources, as the luminosity increases, the height of the radiative shock increases, thus a larger polar area is illuminated, and as a consequence the energy of the CRSF decreases because the dipole magnetic field decreases by a factor of two from the pole to the equator. This model has been specifically proposed to explain the observed anticorrelation of the cyclotron line energy and luminosity of the high-luminosity source V 0332+53. Methods. We used a Monte Carlo code to compute the reflected spectrum from the atmosphere of a magnetic neutron star, when the incident spectrum is a power-law one. We restricted ourselves to cyclotron energies ≪mec2 and used polarization-dependent scattering cross sections, allowing for polarization mode change. Results. As expected, a prominent CRSF is produced in the reflected spectra if the incident photons are in a pencil beam, which hits the neutron-star surface at a point with a well-defined magnetic field strength. However, the incident beam from the radiative shock has a finite width and thus various magnetic field strengths are sampled. As a result of overlap, the reflected spectra have a CRSF, which is close to that produced at the magnetic pole, independent of the height of the radiative shock. Conclusions. Reflection at the surface of a magnetic neutron star cannot explain the observed decrease in the CRSF energy with luminosity in the high-luminosity X-ray pulsar V 0332+53. In addition, it produces absorption lines much shallower than the observed ones.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3