Non-synchronous rotations in massive binary systems

Author:

Putkuri C.,Gamen R.,Morrell N. I.,Benvenuto O. G.,Barbá R. H.,Arias J. I.

Abstract

Context. The OWN Survey has detected several O-type stars with composite spectra whose individual components show very different line broadening. Some of these stars have been revealed as binary systems whose components are asynchronous. This fact may be related to the processes acting in these systems (e.g., angular-momentum transfer, tidal forces, etc.) or to the origin of the binaries themselves. Aims. We aim to determine the orbital and physical parameters of the massive star HD 96264A in order to confirm its binary nature and to constrain the evolutionary status of its stellar components. Methods. We computed the spectroscopic orbit of the system based on the radial velocity analysis of 37 high-resolution, high-S/N, multi-epoch optical spectra. We disentangled the composite spectrum and determined the physical properties of the individual stellar components using FASTWIND models incorporated to the IACOB-GBAT tool. We also computed a set of evolutionary models to estimate the age of the system and explore its tidal evolution. Results. HD 96264A is a binary system composed of an O9.2 IV primary and a B0 V(n) secondary, with minimum masses of 15.0 ± 0.5 M and 9.9 ± 0.4 M, respectively, in a wide and eccentric orbit (P = 124.336 ± 0.008 d; e = 0.265 ± 0.005). The primary and secondary components have different projected rotational velocities (∼40 and ∼215 km s−1 respectively), and the physical properties derived through quantitative spectroscopic analyses include masses of ∼20.5 M and 16.8 M, respectively. The evolutionary models indicate an approximate age of 4.5 Myr for both stars in the pair, corresponding to current masses and radii of 26.0 M and 10.8 R for the primary, and 17.9 M and 7.0 R for the secondary. Conclusions. The youth and wide orbit of the system indicate that the non-synchronous rotational nature of its components is a consequence of the stellar formation process rather than tidal evolution. This circumstance should be accounted for in theories of binary star formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3