Distribution of star formation in galactic bars as seen with Hα and stacked GALEX UV imaging

Author:

Díaz-García S.,Moyano F. D.,Comerón S.,Knapen J. H.,Salo H.,Bouquin A. Y. K.

Abstract

Context. Stellar bars are known to gradually funnel gas to the central parts of disk galaxies. It remains a matter of debate why the distribution of ionized gas along bars and in the circumnuclear regions varies among galaxies. Aims. Our goal is to investigate the spatial distribution of star formation (SF) within bars of nearby low-inclination disk galaxies (i <  65°) from the S4G survey. We aim to link the loci of SF to global properties of the hosts (morphological type, stellar mass, gas fraction, and bar-induced gravitational torques), providing constraints for the conditions that regulate SF in bars. Methods. We use archival GALEX far- and near-UV imaging for 772 barred galaxies, and for a control sample of 423 non-barred galaxies. We also assemble a compilation of continuum-subtracted Hα images for 433 barred galaxies, 70 of which we produced from ancillary photometry and MUSE and CALIFA integral field unit data cubes. We employ two complementary approaches: (i) the analysis of bar (2D) and disk (1D) stacks built from co-added UV images (oriented and scaled with respect to the stellar bars and the extent of disks) of hundreds of galaxies that are binned based on their Hubble stage (T) and bar family; and (ii) the visual classification of the morphology of ionized regions (traced from Hα and UV data) in individual galaxies into three main SF classes: (A) only circumnuclear SF; (B) SF at the bar ends, but not along the bar; and (C) SF along the bar. Barred galaxies with active and passive inner rings are likewise classified. Results. Massive, gas-poor, lenticular galaxies typically belong to SF class A; this is probably related to bar-induced quenching of SF in the disk. The distribution of SF class B peaks for early- and intermediate-type spirals; this most likely results from the interplay of gas flow, shocks, and enhanced shear in massive centrally concentrated galaxies with large bar amplitudes (the latter is supported by the lack of a dip in the radial distribution of SF in non-barred galaxies). Late-type gas-rich galaxies with high gravitational torques are mainly assigned to SF class C; we argue that this is a consequence of low shear among the faintest galaxies. In bar stacks of spiral galaxies the UV emission traces the stellar bars and dominates on their leading side, as witnessed in simulations. Among early-type spirals the central UV emission is ∼0.5 mag brighter in strongly barred galaxies, relative to their weakly barred counterparts; this is probably related to the efficiency of strong bars sweeping the disk gas and triggering central starbursts. On the contrary, in later types the UV emission is stronger at all radii in strongly barred galaxies than in weakly barred and non-barred ones. We also show that the distributions of SF in inner-ringed galaxies are broadly the same in barred and non-barred galaxies, including a UV and Hα deficit in the middle part of the bar; this hints at the effect of resonance rings trapping gas that is no longer funneled inwards. Conclusions. Distinct distributions of SF within bars are reported in galaxies of different morphological types. Star-forming bars are most common among late-type gas-rich galaxies. Bars are important agents in the regulation of SF in disks.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating nearby disc galaxies on the main star formation sequence;Astronomy & Astrophysics;2024-06-26

2. A MUSE view of the core of the giant low-surface-brightness galaxy Malin 1;Astronomy & Astrophysics;2024-06

3. Impacts of Bar-driven Shear and Shocks on Star Formation;The Astrophysical Journal;2024-06-01

4. Bar properties as a function of wavelength: a local baseline with S4G for high-redshift studies;Monthly Notices of the Royal Astronomical Society;2023-12-20

5. Detecting a disc bending wave in a barred-spiral galaxy at redshift 4.4;Monthly Notices of the Royal Astronomical Society;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3