Sustained oscillations in interstellar chemistry models

Author:

Roueff EvelyneORCID,Le Bourlot JacquesORCID

Abstract

Context. Nonlinear behavior in interstellar chemical models has been recognized for 25 years now. Different mechanisms account for the possibility of multiple fixed-points at steady-state, characterized by the ionization degree of the gas. Aims. Chemical oscillations are also a natural behavior of nonlinear chemical models. We study under which conditions spontaneous sustained chemical oscillations are possible, and what kind of bifurcations lead to, or quench, the occurrence of such oscillations. Methods. The well-known ordinary differential equations (ODE) integrator VODE was used to explore initial conditions and parameter space in a gas phase chemical model of a dark interstellar cloud. Results. We recall that the time evolution of the various chemical abundances under fixed temperature conditions depends on the density over cosmic ionization rate nHζ ratio. We also report the occurrence of naturally sustained oscillations for a limited but well-defined range of control parameters. The period of oscillations is within the range of characteristic timescales of interstellar processes and could lead to spectacular resonances in time-dependent models. Reservoir species (C, CO, NH3, ...) oscillation amplitudes are generally less than a factor two. However, these amplitudes reach a factor ten to thousand for low abundance species, e.g. HCN, ND3, that may play a key role for diagnostic purposes. The mechanism responsible for oscillations is tightly linked to the chemistry of nitrogen, and requires long chains of reactions such as found in multi-deuteration processes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3