Refining pulsar radio emission due to streaming instabilities: Linear theory and PIC simulations in a wide parameter range

Author:

Manthei Alina C.ORCID,Benáček Jan,Muñoz Patricio A.ORCID,Büchner Jörg

Abstract

Context. Several important mechanisms that explain coherent pulsar radio emission rely on streaming (or beam) instabilities of the relativistic pair plasma in a pulsar magnetosphere. However, it is still not clear whether the streaming instability by itself is sufficient to explain the observed coherent radio emission. Due to the relativistic conditions that are present in the pulsar magnetosphere, kinetic instabilities could be quenched. Moreover, uncertainties regarding specific model-dependent parameters impede conclusions concerning this question. Aims. We aim to constrain the possible parameter range for which a streaming instability could lead to pulsar radio emission, focusing on the transition between strong and weak beam models, beam drift speed, and temperature dependence of the beam and background plasma components. Methods. We solve a linear relativistic kinetic dispersion relation appropriate for pulsar conditions in a more general way than in previous studies, considering a wider parameter range. In doing so, we provide a theoretical prediction of maximum and integrated growth rates as well as of the fractional bandwidth of the most unstable waves for the investigated parameter ranges. The analytical results are validated by comparison with relativistic kinetic particle-in-cell (PIC) numerical simulations. Results. We obtain growth rates as a function of background and beam densities, temperatures, and streaming velocities while finding a remarkable agreement of the linear dispersion predictions and numerical simulation results in a wide parameter range. Monotonous growth is found when increasing the beam-to-background density ratio. With growing beam velocity, the growth rates firstly increase, reach a maximum and decrease again for higher beam velocities. A monotonous dependence on the plasma temperatures is found, manifesting in an asymptotic behaviour when reaching colder temperatures. A simultaneous change of both temperatures proves not to be a mere linear superposition of both individual temperature dependences. We show that the generated waves are phase-coherent by calculating the fractional bandwidth. Conclusions. Plasma streaming instabilities of the pulsar pair plasma can efficiently generate coherent radio signals if the streaming velocity is ultra-relativistic with Lorentz factors in the range 13 <  γ <  300, if the background and beam temperatures are small enough (inverse temperatures ρ0; ρ1 ≥ 1, i.e., T0; T1 ≤ 6 × 109), and if the beam-to-background plasma density ratio n1/(γbn0) exceeds 10−3, which means that n1/n0 has to be between 1.3 and 20% (depending on the streaming velocity).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3