The mass function dependence on the dynamical state of dark matter haloes

Author:

Seppi R.,Comparat J.,Nandra K.,Bulbul E.,Prada F.,Klypin A.,Merloni A.,Predehl P.,Ider Chitham J.

Abstract

Context. Galaxy clusters are luminous tracers of the most massive dark matter haloes in the Universe. To use them as a cosmological probe, a detailed description of the properties of dark matter haloes is required. Aims. We characterize how the dynamical state of haloes impacts the dark matter halo mass function at the high-mass end (i.e., for haloes hosting clusters of galaxies). Methods. We used the dark matter-only MultiDark suite of simulations and the high-mass objects M > 2.7 × 1013Mh−1 therein. We measured the mean relations of concentration, offset, and spin as a function of dark matter halo mass and redshift. We investigated the distributions around the mean relations. We measured the dark matter halo mass function as a function of offset, spin, and redshift. We formulated a generalized mass function framework that accounts for the dynamical state of the dark matter haloes. Results. We confirm the recent discovery of the concentration upturn at high masses and provide a model that predicts the concentration for different values of mass and redshift with one single equation. We model the distributions around the mean values of concentration, offset, and spin with modified Schechter functions. We find that the concentration of low-mass haloes shows a faster redshift evolution compared to high-mass haloes, especially in the high-concentration regime. We find that the offset parameter is systematically smaller at low redshift, in agreement with the relaxation of structures at recent times. The peak of its distribution shifts by a factor of ∼1.5 from z = 1.4 to z = 0. The individual models are combined into a comprehensive mass function model, which predicts the mass function as a function of spin and offset. Our model recovers the fiducial mass function with ∼3% accuracy at redshift 0 and accounts for redshift evolution up to z ∼ 1.5. Results. This new approach accounts for the dynamical state of the halo when measuring the halo mass function. It offers a connection with dynamical selection effects in galaxy cluster observations. This is key toward precision cosmology using cluster counts as a probe.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3