Recovering the gas properties of protoplanetary disks through parametric visibility modeling: MHO 6

Author:

Kurtovic N. T.ORCID,Pinilla P.ORCID

Abstract

Context. The composition and distribution of the gas in a protoplanetary disk plays a key role in shaping the outcome of the planet formation process. Observationally, the recovery of information such as the emission height and brightness temperature from interfer-ometric data is often limited by the imaging processes. Aims. To overcome the limitations of image-reconstruction when analyzing gas emission from interferometric observations, we have introduced a parametric model to fit the main observable properties of the gaseous disk component in the visibility plane. This approach is also known as parametric visibility modeling. Methods. We applied our parametric visibility modeling to the gas brightness distribution of the molecular line emission from 12CO J = 3–2 and 13CO J = 3–2 in the disk around MHO 6, a very-low-mass star in the Taurus star-forming Region. To improve the flux fidelity of our parametric models, we combined models with different pixel resolution before the computation of their visibilities, referred to as “nesting images.” Results. When we apply our parametric visibility modeling to MHO 6, with independent fits to the emission from its CO isopoto-logues, the models return the same consistent results for the stellar mass, disk geometry, and central velocity. The surface height and brightness temperature distribution are also recovered. When compared to other disks, MHO 6 surface height is among the most elevated surfaces, consistent with the predictions for disks around very-low-mass stars. Conclusions. This work demonstrates the feasibility of running rapidly iterable parametric visibility models in moderate resolution and sensitivity interferometric observations. More importantly, this methodology opens the analysis of disk’s gas morphology to observations where image-based techniques are unable to robustly operate, as in the case of the compact disk around MHO 6.

Funder

Alexander von Humboldt Foundation

UK Research and Innovation

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3