The CARMENES search for exoplanets around M dwarfs

Author:

von Stauffenberg A.,Trifonov T.,Quirrenbach A.,Reffert S.ORCID,Kaminski A.,Dreizler S.ORCID,Ribas I.ORCID,Reiners A.ORCID,Kürster M.ORCID,Twicken J. D.,Rapetti D.ORCID,Caballero J. A.,Amado P. J.,Béjar V. J. S.ORCID,Cifuentes C.ORCID,Góngora S.,Hatzes A. P.ORCID,Henning Th.,Montes D.ORCID,Morales J. C.ORCID,Schweitzer A.ORCID

Abstract

Context. GJ 581 is a nearby M dwarf known to host a packed multiple planet system composed of two super-Earths and a Neptune-mass planet. We present new orbital analyses of the GJ 581 system, utilizing recent radial velocity (RV) data obtained from the CARMENES spectrograph combined with newly reprocessed archival data from the HARPS and HIRES spectrographs. Aims. Our aim was to analyze the post-discovery spectroscopic data of GJ581, which were obtained with CARMENES. In addition, we used publicly available HIRES and HARPS spectroscopic data to seek evidence of the known and disputed exoplanets in this system. We aimed to investigate the stellar activity of GJ 581 and update the planetary system’s orbital parameters using state-of-the-art numerical models and techniques. Methods. We performed a periodogram analysis of the available precise CARMENES, HIRES, and HARPS RVs and of stellar activity indicators. We conducted detailed orbital analyses by testing various orbital configurations consistent with the RV data. We studied the posterior probability distribution of the parameters fit to the data and we explored the long-term stability and overall orbital dynamics of the GJ 581 system. Results. We refined the orbital parameters of the GJ 581 system using the most precise and complete set of Doppler data available. Consistent with the existing literature, our analysis confirms that the system is unequivocally composed of only three planets detectable in the present data, dismissing the putative planet GJ 581 d as an artifact of stellar activity. Our N-body fit reveals that the system’s inclination is i = 47.0−13.0+14.6 deg, which implies that the planets could be up to 30% more massive than their previously reported minimum masses. Furthermore, we report that the GJ 581 system exhibits long-term stability, as indicated by the posterior probability distribution, characterized by secular dynamical interactions without the involvement of mean motion resonances.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3