Improved model of the Supernova Refsdal cluster MACS J1149.5+2223 thanks to VLT/MUSE

Author:

Schuldt S.ORCID,Grillo C.ORCID,Caminha G. B.ORCID,Mercurio A.ORCID,Rosati P.ORCID,Morishita T.ORCID,Stiavelli M.ORCID,Suyu S. H.ORCID,Bergamini P.ORCID,Brescia M.ORCID,Calura F.ORCID,Meneghetti M.ORCID

Abstract

We present new VLT/MUSE observations of the Hubble Frontier Field (HFF) galaxy cluster MACS J1149.5+2223, lensing the well-known supernova “Refsdal” into multiple images, which has enabled the first cosmological applications with a strongly lensed supernova. Thanks to these data, targeting a northern region of the cluster and thus complementing our previous MUSE program on the cluster core, we have released a new catalog containing 162 secure spectroscopic redshifts. We confirmed 22 cluster members, which had previously been only photometrically selected, and detected ten additional ones, resulting in a total of 308 secure members, of which 63% are spectroscopically confirmed. We further identified 17 new spectroscopic multiple images belonging to six different background sources. By exploiting these new and our previously published MUSE data, in combination with the deep HFF images, we developed an improved total mass model of MACS J1149.5+2223. This model includes 308 total mass components for the member galaxies and requires four additional mass profiles, one of which is associated with a cluster galaxy overdensity identified in the north, representing the dark matter mass distribution on larger scales. The values of the resulting 34 free parameters are optimized based on the observed positions of 106 multiple images from 34 different families, that cover an extended redshift range between 1.240 and 5.983. Our final model has a multiple image position root mean square value of 0.39″, which is in good agreement with other cluster lens models based on a similar number of multiple images. With this refined mass model, we have paved the way toward an improved strong-lensing analyses that will exploit the deep and high resolution observations with HST and JWST on a pixel level in the region of the supernova Refsdal host. This will increase the number of observables by around two orders of magnitude, thus offering the opportunity to carry out more precise and accurate cosmographic measurements in the future.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3