Subcritical transition to turbulence in accretion disc boundary layer

Author:

Zhuravlev V. V.,Razdoburdin D. N.

Abstract

Context. Enhanced angular momentum transfer through the boundary layer near the surface of weakly magnetised accreting star is required in order to explain the observed accretion timescales in low-mass X-ray binaries, cataclysmic variables, or young stars with massive protoplanetary discs. The accretion disc boundary layer is locally represented by incompressible homogeneous and boundless flow of the cyclonic type, which is linearly stable. Its non-linear instability at the shear rates of the order of the rotational frequency remains an issue. Aims. We put forward a conjecture that hydrodynamical subcritical turbulence in such a flow is sustained by the non-linear feedback from essentially three-dimensional vortices, which are generated by quasi-two-dimensional trailing shearing spirals grown to high amplitude via the swing amplification. We refer to those three-dimensional vortices as cross-rolls, since they are aligned in the shearwise direction in contrast to streamwise rolls generated by the anti-lift-up mechanism in rotating shear flow on the Rayleigh line. Methods. Transient growth of cross-rolls is studied analytically and further confronted with direct numerical simulations (DNS) of the dynamics of non-linear perturbations in the shearing box approximation. Results. A substantial decrease of transition Reynolds number RT is revealed as one changes a cubic box to a tall box. DNS performed in a tall box show that RT as a function of shear rate accords with the line of constant maximum transient growth of cross-rolls. The transition in the tall box has been observed until the shear rate is three times higher than the rotational frequency, when RT ∼ 50 000. Conclusions. Assuming that the cross-rolls are also responsible for turbulence in the Keplerian flow, we estimate R T ≲ 108 in this case. Our results imply that non-linear stability of Keplerian flow should be verified by extending turbulent solutions found in the cyclonic regime across the solid-body line rather than entering a quasi-Keplerian regime from the side of the Rayleigh line. The most favourable shear rate to test the existence of turbulence in the quasi-Keplerian regime may be sub-Keplerian and equal approximately to 1/2.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3