The Effelsberg survey of FU Orionis and EX Lupi objects

Author:

Szabó Zs. M.,Gong Y.,Menten K. M.,Yang W.,Cyganowski C. J.,Kóspál Á.,Ábrahám P.,Belloche A.,Wyrowski F.

Abstract

Context. FU Orionis (FUor) and EX Lupi (EXor) type objects represent two small but rather spectacular groups of low-mass, young, eruptive stars. In both cases, outbursts of several magnitudes are observed, which are attributed to enhanced mass accretion from the circumstellar disc onto the central protostar. Although these objects are well studied at optical and near-infrared wavelengths, their host molecular environments are poorly explored because of the scarcity of systematic molecular line observations. Aims. We aim to carry out the first dedicated survey of the molecular environments of a large sample of FUors and EXors, observing a total of 51 sources, including some Gaia alerts, to study the ammonia (NH3) emission in their host environments. Methods. We observed the ammonia (J, K) = (1,1), (2,2), and (3,3) inversion transitions at ~23.7 GHz in position-switching mode using the Effelsberg 100-m radio telescope. For 19 of the 51 sources in our sample, we derived H2 column densities and dust temperatures using archival Herschel/SPIRE data at 250 µm, 300 µm, and 500 µm. Results. We detected the NH3 (1,1) transition toward 28 sources and the (2,2) transition toward 12 sources, while the (3,3) transition was detected towards only two sources in our sample. We find kinetic temperatures between ~12 K and 21 K, ammonia column densities from 5.2 × 1013 cm−2 to 3.2 × 1015 cm−2, and fractional ammonia abundances with respect to H2 from 4.7 × 10−9 to 1.5 × 10−7. These results are comparable to those found in infrared dark clouds (IRDCs). Our kinematic analysis suggests that most of the eruptive stars in our sample reside in rather quiescent (sonic or transonic) host environments. Conclusions. Our NH3 observations and analysis of the SPIRE dust-based H2 column density maps confirm the presence of dense material towards seven sources in our sample; additional sources might also harbour dense gas based on their NH2 (2,2) detections, potentially indicating an earlier phase than originally classified. Based on our results, we suggest that observations targeting additional molecular lines would help to refine the evolutionary classification of eruptive stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3