Fossil group origins

Author:

Zarattini S.,Aguerri J. A. L.,Calvi R.,Girardi M.

Abstract

Aims. We analyse the large-scale structure out to 100 Mpc around a sample of 16 confirmed fossil systems using spectroscopic information from the Sloan Digital Sky Survey Data Release 16. Methods. We computed the distance between our fossil groups (FGs) and the centres of filaments and nodes from the literature. We also studied the density of bright galaxies, since this parameter is thought to be a good mass tracers, as well as the projected over-densities of galaxies. Finally, we applied a friends-of-friends (FoF) algorithm to detect virialised structures around our FGs and obtain an estimate of the mass available in their surroundings. Results. We find that FGs are mainly located close to filaments, with a mean distance of 3.7 ± 1.1 R200 and a minimum distance of 0.05 R200. On the other hand, none of our FGs were found close to intersections, with a mean and minimum distance of 19.3 ± 3.6 and 6.1 R200, respectively. There is a correlation that indicates FGs at higher redshifts are found in denser regions, when we use bright galaxies as tracers of the mass. At the same time, FGs with the largest magnitude gaps (Δm12 >  2.5) are found in less dense environments and tend to host (on average) smaller central galaxies. Conclusions. Our results suggest that FGs formed in a peculiar position within the cosmic web, close to filaments and far from nodes, whereby their interaction with the cosmic web itself may be limited. We deduce that FGs with brightest central galaxies (BCGs) that are relatively faint, high values of Δm12, and low redshifts could, in fact, be systems that are at the very last stage of their evolution. Moreover, we confirm theoretical predictions that systems with the largest magnitude gap are not massive.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fossil group origins;Astronomy & Astrophysics;2023-08

2. A UNIONS view of the brightest central galaxies of candidate fossil groups;Astronomy & Astrophysics;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3