Multiple stellar populations in the high-temperature regime: Potassium abundances in the globular cluster M 54 (NGC 6715)

Author:

Carretta EugenioORCID

Abstract

Among the multiple stellar populations in globular clusters (GCs) the very high-temperature H-burning regime, able to produce elements up to potassium, is still poorly explored. Here we present the first abundance analysis of K in 42 giants of NGC 6715 (M 54) with homogeneous abundances of light elements previously derived in our FLAMES survey. Owing to the large mass and low metallicity, a large excess of K could be expected in this GC, which is located in the nucleus of the Sagittarius dwarf galaxy. We actually found a spread in [K/Fe] spanning about 1 dex, with [K/Fe] presenting a significant anti-correlation with [O/Fe] ratios, regardless of the metallicity component in M 54. Evidence for a K–Mg anti-correlation also exists, but this is statistically marginal because of the lack of very Mg-poor stars in this GC. We found, however, a strong correlation between K and Ca. These observations clearly show that the K enhancement in M 54 is probably due to the same network of nuclear reactions generating the phenomenon of multiple stellar populations, at work in a regime of very high temperature. The comparison with recent results in ω Cen is hampered by an unexplained trend with the temperatures for K abundances from optical spectroscopy, and somewhat by a limited sample size for infrared APOGEE data. There are few doubts, however, that the two most massive GCs in the Milky Way host a K–Mg anti-correlation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3