The SHARDDS survey: limits on planet occurrence rates based on point sources analysis via the Auto-RSM framework

Author:

Dahlqvist C.-H.,Milli J.ORCID,Absil O.,Cantalloube F.,Matra L.,Choquet E.ORCID,del Burgo C.ORCID,Marshall J. P.ORCID,Wyatt M.,Ertel S.

Abstract

Context. In the past decade, high contrast imaging allowed the detection and characterisation of exoplanets, brown dwarfs, and circumstellar disks. Large surveys provided new insights about the frequency and properties of massive sub-stellar companions with separations from 5 to 300 au. Aims. In this context, our study aims to detect and characterise potential exoplanets and brown dwarfs within debris disks, considering a diverse population of stars with respect to stellar age and spectral type. We present in this paper the analysis of a set of H-band images taken by the VLT/SPHERE instrument in the context of the SHARDDS survey. This survey gathers 55 main-sequence stars within 100 pc, known to host a high-infrared-excess debris disk, allowing us to potentially better understand the complex interactions between substellar companions and disks. Methods. We rely on the Auto-RSM framework to perform an in-depth analysis of the considered targets, via the computation of detection maps and contrast curves. A clustering approach is used to divide the set of targets into multiple subsets, in order to reduce the computation time by estimating a single optimal parametrisation for each considered subset. Detection maps generated with different approaches are used along with contrast curves to identify potential planetary companions. Planet detection and planet occurrence frequencies are derived from the generated contrast curves, relying on two well-known evolutionary models, namely AMES-DUSTY and AMES-COND. Finally, we study the influence of the observing conditions and observing sequence characteristics on the performance measured in terms of contrast. Results. The use of Auto-RSM allows us to reach high contrast at short separations, with a median contrast of 105 at 300 mas, for a completeness level of 95%. A new planetary characterisation algorithm, based on the RSM framework, is developed and tested successfully, showing a higher astrometric and photometric precision for faint sources compared to standard approaches. Apart from the already known companion of HD 206893 and two point-like sources around HD 114082 which are most likely background stars, we did not detect any new companion around other stars. A correlation study between achievable contrasts and parameters characterising high contrast imaging sequences highlights the importance of the Strehl ratio, wind speed at a height of 30 meters, and presence of wind-driven halo to define the quality of high contrast images. Finally, planet detection and occurrence rate maps are generated and show, for the SHARDDS survey, a high sensitivity between 10 and 100 au for substellar companions with masses >10 MJ.

Funder

FNRS

ERC Horizon 2020

Labex OSUG@2020

Ministry of Science and Technology of Taiwan

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference91 articles.

1. A new look at the statistical model identification

2. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458

3. Belsley D. A., Kuh E., & Welsch R. E. 2005, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (John Wiley & Sons)

4. Benesty J., Chen J., Huang Y., & Cohen I. 2009, in Noise Reduction in Speech Processing (Springer), 37

5. SPHERE: the exoplanet imager for the Very Large Telescope

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3