Analysis of Needlet Internal Linear Combination performance on B-mode data from sub-orbital experiments

Author:

Carones AlessandroORCID,Migliaccio Marina,Marinucci Domenico,Vittorio Nicola

Abstract

Context. The observation of primordial B modes in cosmic microwave background (CMB) polarisation data represents the main scientific goal of most of the future CMB experiments. This signal is predicted to be much lower than polarised Galactic emission (foregrounds) in any region of the sky, pointing to the need for effective component separation methods. Aims. Among all the techniques, the blind Needlet Internal Linear Combination (NILC) is of great relevance given our current limited knowledge of the B-mode foregrounds. In this work, we explore the possibility of employing NILC for the analysis of B modes reconstructed from partial-sky data, specifically addressing the complications that such an application yields such as E–B leakage, needlet filtering, and beam convolution. Methods. We consider two complementary simulated datasets of future experiments: the balloon-borne Short Wavelength Instrument for the Polarisation Explorer (SWIPE) of the Large Scale Polarisation Explorer, which targets the observation of both reionisation and recombination peaks of the primordial CMB B-mode angular power spectrum, and the ground-based Small Aperture Telescope of Simons Observatory, which, instead, is designed to observe only the recombination bump at  ∼ 80. We assessed the performance of the following two alternative techniques to correct for the CMB E–B leakage: the recycling technique and the Zhao-Baskaran method. Results. We find that both techniques reduce the E–B leakage residuals at a negligible level given the sensitivity of the considered experiments, except for the recycling method in the SWIPE footprint at  < 20. Thus, we implemented two extensions of the pipeline, the iterative B decomposition and the diffusive inpainting, which enabled us to recover the input CMB B-mode power for  ≥ 5. For the considered experiments, we demonstrate that needlet filtering and beam convolution do not affect the CMB B-mode reconstruction. Finally, with an appropriate masking strategy, we find that NILC foregrounds subtraction allows one to achieve sensitivities on the tensor-to-scalar ratio in agreement with the targets of the considered CMB experiments.

Funder

ASI/COSMOS

ASI/LiteBIRD

ASI-INFN

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of foreground moment deprojection for semi-blind CMB polarization reconstruction;Journal of Cosmology and Astroparticle Physics;2024-06-01

2. Foreground removal with ILC methods for AliCPT-1;Journal of Cosmology and Astroparticle Physics;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3