Deep solar ALMA neural network estimator for image refinement and estimates of small-scale dynamics

Author:

Eklund HenrikORCID

Abstract

Context. The solar atmosphere is highly dynamic, and observing the small-scale features is valuable for interpretations of the underlying physical processes. The contrasts and magnitude of the observable signatures of small-scale features degrade as angular resolution decreases. Aims. The estimates of the degradation associated with the observational angular resolution allows a more accurate analysis of the data. Methods. High-cadence time-series of synthetic observable maps at λ = 1.25 mm were produced from three-dimensional magnetohydrodynamic Bifrost simulations of the solar atmosphere and degraded to the angular resolution corresponding to observational data with the Atacama Large Millimeter/sub-millimeter Array (ALMA). The deep solar ALMA neural network estimator (Deep-SANNE) is an artificial neural network trained to improve the resolution and contrast of solar observations. This is done by recognizing dynamic patterns in both the spatial and temporal domains of small-scale features at an angular resolution corresponding to observational data and correlated them to highly resolved nondegraded data from the magnetohydrodynamic simulations. A second simulation, previously never seen by Deep-SANNE, was used to validate the performance. Results. Deep-SANNE provides maps of the estimated degradation of the brightness temperature across the field of view, which can be used to filter for locations that most probably show a high accuracy and as correction factors in order to construct refined images that show higher contrast and more accurate brightness temperatures than at the observational resolution. Deep-SANNE reveals more small-scale features in the data and achieves a good performance in estimating the excess temperature of brightening events with an average of 94.0% relative to the highly resolved data, compared to 43.7% at the observational resolution. By using the additional information of the temporal domain, Deep-SANNE can restore high contrasts better than a standard two-dimensional deconvolver technique. In addition, Deep-SANNE is applied on observational solar ALMA data, for which it also reveals eventual artifacts that were introduced during the image reconstruction process, in addition to improving the contrast. It is important to account for eventual artifacts in the analysis. Conclusions. The Deep-SANNE estimates and refined images are useful for an analysis of small-scale and dynamic features. They can identify locations in the data with high accuracy for an in-depth analysis and allow a more meaningful interpretation of solar observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3