Effects of optimisation parameters on data-driven magnetofrictional modelling of active regions

Author:

Kumari A.ORCID,Price D. J.ORCID,Daei F.ORCID,Pomoell J.,Kilpua E. K. J.

Abstract

Context. The solar magnetic field plays an essential role in the formation, evolution, and dynamics of large-scale eruptive structures in the corona. The estimation of the coronal magnetic field, the ultimate driver of space weather, particularly in the ‘low’ and ‘middle’ corona, is presently limited due to practical difficulties. Data-driven time-dependent magnetofrictional modelling (TMFM) of active region magnetic fields has been proven to be a useful tool to study the corona. The input to the model is the photospheric electric field that is inverted from a time series of the photospheric magnetic field. Constraining the complete electric field, that is, including the non-inductive component, is critical for capturing the eruption dynamics. We present a detailed study of the effects of optimisation of the non-inductive electric field on the TMFM of AR 12473. Aims. We aim to study the effects of varying the non-inductive electric field on the data-driven coronal simulations, for two alternative parametrisations. By varying parameters controlling the strength of the non-inductive electric field, we wish to explore the changes in flux rope formation and their early evolution and other parameters, for instance, axial flux and magnetic field magnitude. Methods. We used the high temporal and spatial resolution cadence vector magnetograms from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). The non-inductive electric field component in the photosphere is critical for energising and introducing twist to the coronal magnetic field, thereby allowing unstable configurations to be formed. We estimated this component using an approach based on optimising the injection of magnetic energy. Results. Our data show that flux ropes are formed in all of the simulations except for those with the lower values of these optimised parameters. However, the flux rope formation, evolution and eruption time varies depending on the values of the optimisation parameters. The flux rope is formed and has overall similar evolution and properties with a large range of non-inductive electric fields needed to determine the non-inductive electric field component that is critical for energising and introducing twist to the coronal magnetic field. Conclusions. This study shows that irrespective of non-inductive electric field values, flux ropes are formed and erupted, which indicates that data-driven TMFM can be used to estimate flux rope properties early in their evolution without needing to employ a lengthy optimisation process.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3