Non-resonant Alfvénic instability activated by high temperature of ion beams in compensated-current astrophysical plasmas

Author:

Malovichko P.,Voitenko Y.,De Keyser J.

Abstract

Context. Compensated-current systems are established in response to hot ion beams in terrestrial foreshock regions, around supernova remnants, and in other space and astrophysical plasmas. Aims. We study a non-resonant reactive instability of Alfvén waves propagating quasi-parallel to the background magnetic field B0 in such systems. Methods. The instability is investigated analytically in the framework of kinetic theory applied to the hydrogen plasmas penetrated by hot proton beams. Results. The instability arises at parallel wavenumbers kz that are sufficiently large to demagnetize the beam ions, kzVTb/ωBi ≳ 1 (here VTb is the beam thermal speed along B0 and ωBi is the ion-cyclotron frequency). The Alfvén mode is then made unstable by the imbalance of perturbed currents carried by the magnetized background electrons and partially demagnetized beam ions. The destabilizing effects of the beam temperature and the temperature dependence of the instability threshold and growth rate are demonstrated for the first time. The beam temperature, density, and bulk speed are all destabilizing and can be combined in a single destabilizing factor αb triggering the instability at αb > αbthr, where the threshold value varies in a narrow range 2.43 ≤  αbthr ≤ 4.87. New analytical expressions for the instability growth rate and its boundary in the parameter space are obtained and can be directly compared with observations. Two applications to terrestrial foreshocks and foreshocks around supernova remnants are briefly discussed. In particular, our results suggest that the ions reflected by the shocks around supernova remnants can drive stronger instability than the cosmic rays.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Oblique Alfvén Ion Beam Instability in the Earth's Ion Foreshock;Research in Astronomy and Astrophysics;2023-01-20

2. Kinetic Alfvén Waves’ Generation in Front of the Earth’s Main Shock Wave;Kinematics and Physics of Celestial Bodies;2022-09-19

3. inetic Alfven waves generation ahead of the Earth bow shock;Kinematika i fizika nebesnyh tel (Online);2022-09-01

4. Development of Firehose Instability of a Magnetosonic Type in the Presence of High-Speed Proton Beams;Kinematics and Physics of Celestial Bodies;2020-05

5. Development of firehose instability of magnetosonic type in the presence of high-speed proton beams;Kinematika i fizika nebesnyh tel (Online);2020-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3