Circumstellar ammonia in oxygen-rich evolved stars

Author:

Wong K. T.ORCID,Menten K. M.ORCID,Kamiński T.ORCID,Wyrowski F.,Lacy J. H.ORCID,Greathouse T. K.

Abstract

Context. The circumstellar ammonia (NH3) chemistry in evolved stars is poorly understood. Previous observations and modelling showed that NH3 abundance in oxygen-rich stars is several orders of magnitude above that predicted by equilibrium chemistry.Aims. We would like to characterise the spatial distribution and excitation of NH3 in the oxygen-rich circumstellar envelopes (CSEs) of four diverse targets: IK Tau, VY CMa, OH 231.8+4.2, and IRC +10420. Methods. We observed NH3 emission from the ground state in the inversion transitions near 1.3 cm with the Very Large Array (VLA) and submillimetre rotational transitions with the Heterodyne Instrument for the Far-Infrared (HIFI) aboard Herschel Space Observatory from all four targets. For IK Tau and VY CMa, we observed NH3 rovibrational absorption lines in the ν2 band near 10.5 μm with the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). We also attempted to search for the rotational transition within the excited vibrational state (v2 = 1) near 2 mm with the IRAM 30m Telescope. Non-LTE radiative transfer modelling, including radiative pumping to the vibrational state, was carried out to derive the radial distribution of NH3 in the CSEs of these targets. Results. We detected NH3 inversion and rotational emission in all four targets. IK Tau and VY CMa show blueshifted absorption in the rovibrational spectra. We did not detect vibrationally excited rotational transition from IK Tau. Spatially resolved VLA images of IK Tau and IRC +10420 show clumpy emission structures; unresolved images of VY CMa and OH 231.8+4.2 indicate that the spatial-kinematic distribution of NH3 is similar to that of assorted molecules, such as SO and SO2, that exhibit localised and clumpy emission. Our modelling shows that the NH3 abundance relative to molecular hydrogen is generally of the order of 10−7, which is a few times lower than previous estimates that were made without considering radiative pumping and is at least ten times higher than that in the carbon-rich CSE of IRC +10216. NH3 in OH 231.8+4.2 and IRC +10420 is found to emit in gas denser than the ambient medium. Incidentally, we also derived a new period of IK Tau from its V-band light curve. Conclusions. NH3 is again detected in very high abundance in evolved stars, especially the oxygen-rich ones. Its emission mainly arises from localised spatial-kinematic structures that are probably denser than the ambient gas. Circumstellar shocks in the accelerated wind may contribute to the production of NH3. Future mid-infrared spectroscopy and radio imaging studies are necessary to constrain the radii and physical conditions of the formation regions of NH3.

Funder

International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne

Bonn-Cologne Graduate School of Physics and Astronomy

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PO and PN in the Envelope of VY Canis Majoris: Elucidating the Chemistry and Origin of Phosphorus;The Astrophysical Journal Letters;2024-08-01

2. Vibrational energy transfer in ammonia–helium collisions;Faraday Discussions;2024

3. Collision-induced excitation of ammonia in warm interstellar and circumstellar environments;Monthly Notices of the Royal Astronomical Society;2023-06-30

4. Late-Type Stars Seen at High Spectral Resolution at Mid-Infrared Wavelengths;European Conference on Laboratory Astrophysics ECLA2020;2023

5. Collisional and radiative pumping in 22-GHz water masers;Monthly Notices of the Royal Astronomical Society;2022-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3