Segregation effect and N2 binding energy reduction in CO-N2 systems adsorbed on water ice substrates

Author:

Nguyen T.ORCID,Baouche S.,Congiu E.,Diana S.,Pagani L.,Dulieu F.

Abstract

Context. CO and N2 are two abundant species in molecular clouds. CO molecules are heavily depleted from the gas phase towards the centre of pre-stellar cores, whereas N2 maintains a high gas phase abundance. For example, in the molecular cloud L183, CO is depleted by a factor of ≈400 in its centre with respect to the outer regions of the cloud, whereas N2 is only depleted by a factor of ≈20. The reason for this difference is not yet clear, since CO and N2 have identical masses, similar sticking properties, and a relatively close energy of adsorption. Aims. We present a study of the CO-N2 system in sub-monolayer regimes, with the aim to measure, analyse and elucidate how the adsorption energy of the two species varies with coverage, with much attention to the case where CO is more abundant than N2. Methods. Experiments were carried out using the ultra-high vacuum (UHV) set-up called VENUS. Sub-monolayers of either pure 13CO or pure 15N2 and 13CO:15N2 mixtures were deposited on compact amorphous solid water ice, and crystalline water ice. Temperature-programmed desorption experiments, monitored by mass spectrometry, are used to analyse the distributions of binding energies of 13CO and 15N2 when adsorbed together in different proportions. Results. The distribution of binding energies of pure species varies from 990 K to 1630 K for 13CO, and from 890 K to 1430 K for 15N2. When a CO:N2 mixture is deposited, the 15N2 binding energy distribution is strongly affected by the presence of 13CO, whereas the adsorption energy of CO is unaltered. Conclusions. Whatever types of water ice substrate we used, the N2 effective binding energy was significantly lowered by the presence of CO molecules. We discuss the possible impact of this finding in the context of pre-stellar cores.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3