Physical properties of β Lyrae A and its opaque accretion disk

Author:

Mourard D.ORCID,Brož M.,Nemravová J. A.,Harmanec P.,Budaj J.,Baron F.,Monnier J. D.,Schaefer G. H.,Schmitt H.,Tallon-Bosc I.,Armstrong J. T.,Baines E. K.,Bonneau D.,Božić H.,Clausse J. M.,Farrington C.,Gies D.,Juryšek J.,Korčáková D.,McAlister H.,Meilland A.,Nardetto N.,Svoboda P.,Šlechta M.,Wolf M.,Zasche P.

Abstract

Mass exchange and mass loss in close binaries can significantly affect their evolution, but a complete self-consistent theory of these processes is still to be developed. Processes such as radiative shielding due to a hot-spot region, or a hydrodynamical interaction of different parts of the gas stream have been studied previously. In order to test the respective predictions, it is necessary to carry out detailed observations of binaries undergoing the largescale mass exchange, especially for those that are in the rapid transfer phase. β Lyr A is an archetype of such a system, having a long and rich observational history. Our goal for this first study is to quantitatively estimate the geometry and physical properties of the optically thick components, namely the Roche-lobe filling mass-losing star, and the accretion disk surrounding the mass-gaining star of β Lyr A. A series of continuum visible and NIR spectro-interferometric observations by the NPOI, CHARA/MIRC and VEGA instruments covering the whole orbit of β Lyr A acquired during a two-week campaign in 2013 were complemented with UBVR photometric observations acquired during a three-year monitoring of the system. We included NUV and FUV observations from OAO A-2, IUE, and Voyager satellites. All these observations were compared to a complex model of the system. It is based on the simple LTE radiative transfer code SHELLSPEC, which was substantially extended to compute all interferometric observables and to perform both global and local optimization of system parameters. Several shapes of the accretion disk were successfully tested – slab, wedge, and a disk with an exponential vertical profile – and the following properties were consistently found: the radius of the outer rim is 30.0±1.0 R, the semithickness of the disk 6.5±1.0 R, and the binary orbital inclination i=93.5±1.0deg. The temperature profile is a power-law or a steady-disk in case of the wedge geometry. The properties of the accretion disk indicate that it cannot be in a vertical hydrostatic equilibrium, which is in accord with the ongoing mass transfer. The hot spot was also detected in the continuum but is interpreted as a hotter part of the accretion disk illuminated by the donor. As a by-product, accurate kinematic and radiative properties of β Lyr B were determined.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3