Timing irregularities and glitches from the pulsar monitoring campaign at IAR

Author:

Zubieta E.ORCID,García F.ORCID,del Palacio S.,Araujo Furlan S. B.ORCID,Gancio G.,Lousto C. O.ORCID,Combi J. A.,Espinoza C. M.ORCID

Abstract

Context. Pulsars have a very stable rotation overall. However, sudden increases in their rotation frequency, known as glitches, perturb their evolution. While many observatories commonly detect large glitches, small glitches are harder to detect because of the lack of daily cadence observations over long periods of time (years). Aims. We aim to explore and characterise the timing behaviour of young pulsars on daily timescales, looking for small glitches and other irregularities, in order to further our comprehension of the real distribution of glitch sizes. Our findings have consequences for the theoretical modelling of the glitch mechanism. Methods. We observed six pulsars with up to daily cadence between December 2019 and January 2024 with the two antennas of the Argentine Institute of Radio Astronomy (IAR). We used standard pulsar timing tools to obtain the times of arrival of the pulses and to characterise the pulsar’s rotation. We developed an algorithm to look for small timing events in the data and calculate the changes in the frequency (ν) and its derivative (ν̇) at those epochs. Results. We find that the rotation of all pulsars in this dataset is affected by small step changes in ν and ν̇. Among them, we find three new glitches that have not been reported before: two glitches in PSR J1048−5832 with relative sizes of Δν/ν = 9.1(4)×10−10 and Δν/ν = 4.5(1)×10−9, and one glitch in the Vela pulsar with a size of Δν/ν = 2.0(2)×10−10. We also report new decay terms on the 2021 Vela giant glitch, and on the 2022 giant glitches in PSR J0742−2822 and PSR J1740−3015, respectively. In addition, we find that the red noise contribution significantly diminished in PSR J0742−2822 after its giant glitch in 2022. Conclusions. Our results highlight the importance of high-cadence monitoring with an exhaustive analysis of the residuals to better characterise the distribution of glitch sizes and to deepen our understanding of the mechanisms behind glitches, red noise, and timing irregularities.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3