Energetic explosions from collisions of stars at relativistic speeds in galactic nuclei

Author:

Hu B. X.,Loeb A.ORCID

Abstract

Aims. We investigated collisions that could occur between stars moving near the speed of light around supermassive black holes (SMBHs) with mass M ≳ 108M, without being tidally disrupted. Within this approximate SMBH mass range, for sun-like stars, the tidal-disruption radius is smaller than the SMBH’s event horizon; therefore we did not anticipate tidal disruption events (TDEs). Methods. Differential collision rates were calculated by defining probability distribution functions for various parameters of interest, such as the impact parameter, distance from the SMBH at the time of the collision, the relative velocity between the two colliding stars, and the masses of the two colliding stars. The relative velocity parameter was drawn from an appropriate distribution function for SMBHs. We integrated over all these parameters to arrive at a total collision rate for a galaxy with a specific SMBH mass. We then considered how the stellar population in the vicinity of the SMBH was depleted and replenished over time, and calculated the effect this can have on the collision rate over time. We further calculated the differential collision rate as a function of the total energy released, the energy released per unit mass lost, and the galactocentric radius. Results. The overall rate for collisions taking place within the inner ∼1 pc of galaxies with M = 108, 109, and 1010 M are Γ ∼ 2.2 × 10−3, 2.2 × 10−4, and 4.7 × 10−5 yr−1, respectively. The most common collisions would release energies on the order of ∼1049 − 1051 ergs, with the energy distribution peaking at higher energies in galaxies with more massive SMBHs. In addition, we examined sample light curves for collisions with varying parameters, and find that the peak luminosity could reach or even exceed that of superluminous supernovae (SLSNe), albeit in the case of light curves with much shorter durations. Conclusions. Weaker events may initially be mistaken for low-luminosity supernovae. In addition, we note that these events would likely create streams of debris that would accrete onto the SMBH, potentially creating accretion flares that may resemble TDEs.

Funder

National Defense Science and Engineering Graduate

Black Hole Initiative

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3