Impediments to the cosmic growth of galaxies: The outflow budget from Star Formation and Active Galactic Nuclei

Author:

Buchner JohannesORCID

Abstract

The gas reservoir of galaxies can be altered by outflows that are driven by star formation and luminous active galactic nuclei. Jets heating the surroundings of host galaxies can also prevent the gas from cooling and prevent inflows. Spectacular examples for these three mass-displacement channels have been observed, but their importance in transforming the galaxy population depends on the occurrence rates of the outflow triggers. We investigate the absolute and relative importance of these three channels. In an observation-driven approach, we combined distribution functions and scaling relations to empirically compare average outflow rates across the total stellar mass spectrum of the galaxy and across cosmic time. This hinges on local outflow studies, which should be extended to systematic, large, and diverse samples, and we did not consider a halo-heating effect by radiation-driven outflows so far. Independent of simulations, our results show the dominance of star formation-driven outflows in low-mass galaxies. Massive galaxies today are predominately prevented from growing further by jet heating, while at z = 1 − 3, all three processes are approximately similarly important. Over the full mass spectrum and cosmic history, outflows driven by the radiation from active galactic nuclei are never the dominant process.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3