Inference of electric currents in the solar photosphere

Author:

Pastor Yabar A.ORCID,Borrero J. M.,Quintero Noda C.ORCID,Ruiz Cobo B.

Abstract

Context. Despite their importance, routine and direct measurements of electric currents, j, in the solar atmosphere have generally not been possible. Aims. We aim at demonstrating the capabilities of a newly developed method for determining electric currents in the solar photosphere. Methods. We employ three-dimensional radiative magneto-hydrodynamic (MHD) simulations to produce synthetic Stokes profiles in several spectral lines with a spatial resolution similar to what the newly operational 4-meter Daniel K. Inouye Solar Telescope solar telescope should achieve. We apply a newly developed inversion method of the polarized radiative transfer equation with magneto-hydrostatic (MHS) constraints to infer the magnetic field vector in the three-dimensional Cartesian domain, B(x, y, z), from the synthetic Stokes profiles. We then apply Ampere’s law to determine the electric currents, j, from the inferred magnetic field, B(x, y, z), and compare the results with the electric currents present in the original MHD simulation. Results. We show that the method employed here is able to attain reasonable reliability (close to 50% of the cases are within a factor of two, and this increases to 60%–70% for pixels with B ≥ 300 G) in the inference of electric currents for low atmospheric heights (optical depths at 500 nm τ5∈[1, 0.1]) regardless of whether a small or large number of spectral lines are inverted. Above these photospheric layers, the method’s accuracy strongly deteriorates as magnetic fields become weaker and as the MHS approximation becomes less accurate. We also find that the inferred electric currents have a floor value that is related to low-magnetized plasma, where the uncertainty in the magnetic field inference prevents a sufficiently accurate determination of the spatial derivatives. Conclusions. We present a method that allows the inference of the three components of the electric current vector at deep atmospheric layers (photospheric layers) from spectropolarimetric observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3