RV-detected planets around M dwarfs: Challenges for core accretion models

Author:

Schlecker M.ORCID,Burn R.,Sabotta S.,Seifert A.,Henning Th.,Emsenhuber A.,Mordasini C.,Reffert S.,Shan Y.,Klahr H.

Abstract

Context. Planet formation is sensitive to the conditions in protoplanetary disks, for which scaling laws as a function of stellar mass are known. Aims. We aim to test whether the observed population of planets around low-mass stars can be explained by these trends, or if separate formation channels are needed. Methods. We address this question by confronting a state-of-the-art planet population synthesis model with a sample of planets around M dwarfs observed by the HARPS and CARMENES radial velocity (RV) surveys. To account for detection biases, we performed injection and retrieval experiments on the actual RV data to produce synthetic observations of planets that we simulated following the core accretion paradigm. Results. These simulations robustly yield the previously reported high occurrence of rocky planets around M dwarfs and generally agree with their planetary mass function. In contrast, our simulations cannot reproduce a population of giant planets around stars less massive than 0.5 solar masses. This potentially indicates an alternative formation channel for giant planets around the least massive stars that cannot be explained with current core accretion theories. We further find a stellar mass dependency in the detection rate of short-period planets. A lack of close-in planets around the earlier-type stars (M* > 0.4 M) in our sample remains unexplained by our model and indicates dissimilar planet migration barriers in disks of different spectral subtypes. Conclusions. Both discrepancies can be attributed to gaps in our understanding of planet migration in nascent M dwarf systems. They underline the different conditions around young stars of different spectral subtypes, and the importance of taking these differences into account when studying planet formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3