CHEMOUT: CHEMical complexity in star-forming regions of the OUTer Galaxy

Author:

Fontani F.,Colzi L.,Bizzocchi L.,Rivilla V. M.,Elia D.,Beltrán M. T.,Caselli P.,Magrini L.,Sánchez-Monge A.,Testi L.,Romano D.

Abstract

Context. The outer Galaxy is an environment with metallicity lower than the Solar one. Because of this, the formation and survival of molecules in star-forming regions located in the inner and outer Galaxy is expected to be different. Aims. To gain an understanding on how chemistry changes throughout the Milky Way, it is crucial to observe outer Galaxy star-forming regions to constrain models adapted for lower metallicity environments. Methods. In this paper, we present a new observational project: chemical complexity in star-forming regions of the outer Galaxy (CHEMOUT). The goal is to unveil the chemical composition in 35 dense molecular clouds associated with star-forming regions of the outer Galaxy through observations obtained with the Institut de RadioAstronomie Millimétrique 30 m telescope in specific 3 mm and 2 mm spectral windows. Results. In this first paper, we present the sample, and report the detection at 3 mm of simple organic species HCO+, H13CO+, HCN, c-C3H2, HCO, C4H, and HCS+, of the complex hydrocarbon CH3CCH, and of SiO, CCS, and SO. From the optically thin line JKa ,Kb = 21,2 − 10,1 of c-C3 H2 we estimate new kinematic heliocentric and Galactocentric distances based on an updated rotation curve of the Galaxy. The detection of the molecular tracers does not seem to have a clear dependence on the Galactocentric distance. Moreover, with the purpose of investigating the occurrence of outflows and investigate the association with protostellar activity, we analyse the HCO+ line profiles. We find high velocity wings in ~71% of the targets, and their occurrence does not depend on the Galactocentric distance. Conclusions. Our results, confirmed by a statistical analysis, show that the presence of organic molecules and tracers of protostellar activity is ubiquitous in the low metallicity environment of the outer Galaxy. Based on this and on the additional evidence that small, terrestrial planets are omnipresent in the Galaxy, we support previous claims that the definition of the Galactic habitable zone should be subject to further discussion in view of the ubiquitous capacity of the interstellar medium to form organic molecules.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observations of phosphorus-bearing molecules in the interstellar medium;Frontiers in Astronomy and Space Sciences;2024-08-21

2. High-mass star formation across the Large Magellanic Cloud;Astronomy & Astrophysics;2024-07-29

3. Prebiotic Astrochemistry from Astronomical Observations and Laboratory Spectroscopy;Annual Review of Physical Chemistry;2024-06-28

4. Dense gas and star formation in the outer Milky Way;Astronomy & Astrophysics;2023-08

5. The evolution of CNO elements in galaxies;The Astronomy and Astrophysics Review;2022-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3