X-ray characterisation of the massive galaxy cluster ClG J104803.7+313843 at z = 0.76 with XMM-Newton

Author:

Bartalucci I.ORCID,Gastaldello F.,Piconcelli E.,Zappacosta L.,Rossetti M.,Ghizzardi S.,De Grandi S.,Molendi S.,Laurenti M.

Abstract

We present the characterisation of the massive cluster ClG J104803.7+313843 at z = 0.76 performed using a serendipitous XMM-Newton observation. High redshift and massive objects represent an ideal laboratory to benchmark our understanding of how clusters form and assembly formation is mainly driven by gravity. Leveraging the high throughput of XMM-Newton we were firstly able to determine the redshift of the object, shedding light on ambiguous photometric redshift associations. We investigated the morphology of this cluster which shows signs of merging activities in the outskirts and a flat core. We also measured the radial density profile up to R500. With these quantities in hand, we were able to determine the mass, M500 = 5.64−0.62+0.79 × 1014M, using the YX proxy. This quantity improves the previous measurement of the mass of this object by a factor of ∼3.5. The characterisation of one cluster at such a mass and redshift regime is fundamental as these objects are intrinsically rare, with the number of objects discovered so far being less than ∼25. Our study highlights the importance of using X-ray observations in combination with ancillary multi-wavelength data to improve our understanding of high-z and massive clusters.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3