Strong spiral arms drive secular growth of pseudo bulges in disk galaxies

Author:

Yu Si-YueORCID,Xu Dewang,Ho Luis C.,Wang Jing,Kao Wei-Bo

Abstract

Spiral-driven instabilities may drive gas inflow to enhance central star formation in disk galaxies. We investigate this hypothesis using the Sloan Digital Sky Survey (SDSS) in a sample of 2779 nearby unbarred star-forming main sequence spiral galaxies. The strength of spiral arms is quantified by their average Fourier amplitude relative to the axisymmetric disk. The star formation properties in the central 1–3 kpc region were derived from the SDSS spectra. We show that galaxies with stronger spiral arms not only tend to have more intense central specific star formation rates (sSFRs), larger Balmer absorption line indices, and lower 4000 Å break strengths, but also have enhanced central sSFRs relative to the sSFR measured for the whole galaxy. This link is independent of redshift, stellar mass, surface density, and concentration. There is a lack of evidence for strong spiral arms being associated with a significant fraction of starburst or post-starburst galaxies, implying that the spiral-induced central star formation is likely continuous rather than bursty. We also show that stronger spiral arms tend to have an increasing fraction of pseudo bulges, a relatively unchanged fraction of star-forming classical bulges, and a decreasing fraction of quenched classical bulges. Moreover, the concentration of galaxies hosting pseudo bulges mildly increases with stronger spiral arms, implying that spirals help pseudo bulges grow. The connection between spirals and bulge type is partly attributed to the suppression of spirals by classical bulges and partly to the enhanced central star formation driven by spirals. We explain our results in the context of a scenario where spiral arms transport cold gas inward to trigger continuous central star formation, which facilitates the buildup of pseudo bulges. Spiral arms thus play a role in the secular evolution of disk galaxies.

Funder

Alexander von Humboldt Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3