Semi-supervised standardized detection of extrasolar planets

Author:

Sulis S.ORCID,Mary D.,Bigot L.,Deleuil M.

Abstract

Context. The detection of small exoplanets with the radial velocity (RV) technique is limited by various poorly known noise sources of instrumental and stellar origin. As a consequence, current detection techniques often fail to provide reliable estimates of the significance levels of detection tests in terms of false-alarm rates or p-values. Aims. We designed an RV detection procedure that provides reliable p-value estimates while accounting for the various noise sources typically affecting RV data. The method is able to incorporate ancillary information about the noise (e.g., stellar activity indicators) and specific data- or context-driven data (e.g. instrumental measurements, magnetohydrodynamical simulations of stellar convection, and simulations of meridional flows or magnetic flux emergence). Methods. The detection part of the procedure uses a detection test that is applied to a standardized periodogram. Standardization allows an autocalibration of the noise sources with partially unknown statistics (algorithm 1). The estimation of the p-value of the test output is based on dedicated Monte Carlo simulations that allow handling unknown parameters (algorithm 2). The procedure is versatile in the sense that the specific pair (periodogram and test) is chosen by the user. Ancillary or context-driven data can be used if available. Results. We demonstrate by extensive numerical experiments on synthetic and real RV data from the Sun and αCenB that the proposed method reliably allows estimating the p-values. The method also provides a way to evaluate the dependence of the estimated p-values that are attributed to a reported detection on modeling errors. It is a critical point for RV planet detection at low signal-to-noise ratio to evaluate this dependence. The python algorithms developed in this work are available on GitHub. Conclusions. Accurate estimation of p-values when unknown parameters are involved in the detection process is an important but only recently addressed question in the field of RV detection. Although this work presents a method to do this, the statistical literature discussed in this paper may trigger the development of other strategies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3