The molecular gas properties in local Seyfert 2 galaxies

Author:

Salvestrini F.ORCID,Gruppioni C.,Hatziminaoglou E.ORCID,Pozzi F.,Vignali C.,Casasola V.,Paladino R.,Aalto S.,Andreani P.ORCID,Marchesi S.ORCID,Stanke T.

Abstract

Aims. We present a multiwavelength study of the molecular gas properties of a sample of local Seyfert 2 galaxies to assess if, and to what extent, the presence of an active galactic nucleus (AGN) can affect the interstellar medium (ISM) properties in a sample of 33 local Seyfert 2 galaxies. Methods. We compare the molecular gas content (MH2) derived from new and archival low-J CO line measurements of a sample of AGN and a control sample of star-forming galaxies (SFGs). Both the AGN and the control sample are characterized in terms of host-galaxy properties, for example stellar and dust masses (M and Mdust, respectively) and the star formation rate (SFR). We also investigate the effect of AGN activity on the emission of polycyclic aromatic hydrocarbon (PAH) molecules in the mid-infrared (MIR), a waveband where the dust-reprocessed emission from the obscured AGN contributes the most. Result. The AGN hosted in less massive galaxies (i.e., M < 1010.5M; Mdust < 107.5M) show larger molecular gas contents with respect to SFGs that have the same stellar and dust masses. When comparing their depletion times (tdep ∝ MH2/SFR), AGN show tdep ∼ 0.3 − 1.0 Gyr, similar to the times observed in the control sample of SFGs. Seyfert 2 galaxies show fainter PAH luminosity the larger the dominance of the nuclear activity in the MIR. Conclusions. We find no clear evidence for a systematic reduction in the molecular gas reservoir at galactic scales in Seyfert galaxies with respect to SFGs. This is in agreement with recent studies that show that molecular gas content is only reduced in sub-kiloparsec-sized regions, where emission from the accreting supermassive black hole dominates. Nonetheless, we show that the impact of AGN activity on the ISM is clearly visible as a suppression of the PAH luminosity.

Funder

INAF

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3