High resolution LAsMA 12CO and 13CO observation of the G305 giant molecular cloud complex

Author:

Mazumdar P.ORCID,Wyrowski F.,Urquhart J. S.,Colombo D.,Menten K. M.,Neupane S.,Thompson M. A.

Abstract

Context. Understanding the effect of feedback from young massive stars on the star-forming ability of their parental molecular clouds is of central importance for studies of the interstellar medium and star formation. Aims. We observed the G305 star-forming complex in the J = 3−2 lines of 12CO and 13CO to investigate whether feedback from the central OB stars was triggering star formation in G305 or actually disrupting this process. Methods. The region was decomposed into clumps using dendrogram analysis. A catalog of the clump properties such as their positions, luminosities, masses, radii, velocity dispersions, volume densities, and surface mass densities was created. The surface mass densities of the clumps were plotted as a function of the incident 8 μm flux. A mask of the region with 8 μm flux > 100 MJy sr−1 was created and clumps were categorized into three classes based on their extent of overlap with the mask, namely mostly inside (>67% overlap), partly inside (>10 and <67% overlap), and outside (<10% overlap). The surface mass density distribution of each of these populations was separately plotted. This was followed by comparing the G305 clumps with the Galactic average taken from a distance-limited sample of ATLASGAL and CHIMPS clumps. Finally, the cumulative distribution functions (CDFs) of the clump masses in G305 and their LM ratios were compared to that of the Galactic sample to determine which mechanism of feedback was dominant in G305. Results. The surface mass densities of clumps showed a positive correlation with the incident 8 μm flux. The data did not have sufficient velocity resolution to discern the effects of feedback on the linewidths of the clumps. The subsample of clumps labeled mostly inside had the highest median surface mass densities followed by the partly inside and outside subsamples. The difference between the surface mass density distribution of the three subsamples were shown to be statistically significant using the Kolmogorov–Smirnov test. The mostly inside sample also showed the highest level of fragmentation compared to the other two subsamples. These prove that the clumps inside the G305 region are triggered. The G305 clump population is also statistically different from the Galactic average population, the latter approximating that of a quiescent population of clumps. This provided further evidence that redistribution was not a likely consequence of feedback on the giant molecular cloud. The CDFs of clump masses and their LM ratios are both flatter than that of the Galactic average, indicating that clumps are heavier and more efficient at forming stars in G305 compared to the Galactic average. Conclusions. Feedback in G305 has triggered star formation. The collect and collapse method is the dominant mechanism at play in G305.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3