First 3D radiation-hydrodynamic simulations of Wolf-Rayet winds

Author:

Moens N.ORCID,Poniatowski L. G.ORCID,Hennicker L.,Sundqvist J. O.ORCID,El Mellah I.ORCID,Kee N. D.ORCID

Abstract

Context. Classical Wolf-Rayet (WR) stars are direct supernova progenitors undergoing vigorous mass loss. Understanding the dense and fast outflows of such WR stars is thus crucial for understanding advanced stages of stellar evolution and the dynamical feedback of massive stars on their environments, and for characterizing the distribution of black hole masses. Aims. In this paper, we develop the first time-dependent, multidimensional, radiation-hydrodynamical models of the extended optically thick atmospheres and wind outflows of hydrogen-free classical WR stars. Methods. A flux-limiting radiation hydrodynamics approach is used on a finite volume mesh to model WR outflows. The opacities are described using a combination of tabulated Rosseland mean opacities and the enhanced line opacities expected within a supersonic flow. Results. For high-luminosity models, a radiation-driven, dense, supersonic wind is launched from deep subsurface regions associated with peaks in the Rosseland mean opacity. For a model with lower luminosity, on the other hand, the Rosseland mean opacity is not sufficient to sustain a net-radial outflow in the subsurface regions. Instead, what develops in this case, is a "standard" line-driven wind launched from the optically thin regions above an extended, moderately inflated, and highly turbulent atmosphere. We thus find here a natural transition from optically thick outflows of classical WR stars to optically thin winds of hot, compact subdwarfs; in our simulations, this transition occurs approximately at a luminosity that is ~40% of the Eddington luminosity. Because of the changing character of the wind-launching mechanism, this transition is also accompanied by a large drop (on the low-luminosity end) in the average mass-loss rate. Since the subsurface opacity peaks are further associated with convective instabilities, the flows are highly structured and turbulent, consisting of coexisting regions of outflowing, stagnated, and even pockets of infalling gas. Typical velocity dispersions in our 3D models are high, 100–300 km s−1, but the clumping factors are rather modest, fc1 ≡ 〈ρ2〉/〈ρ2 ~ 2. We further find that, while the low-density gas in our simulations is strongly radiation-driven, the overdense structures are, after their initial launch, primarily advected outward by ram-pressure gradients. This inefficient radiative acceleration of dense "clumps" reflects the inverse dependence of line driving on mass density and leads to a general picture wherein high-density gas parcels move significantly slower than the mean and low-density wind material.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Particle Acceleration and Magnetic Field Amplification by Relativistic Shocks in Inhomogeneous Media;The Astrophysical Journal Letters;2024-06-20

2. 2D unified atmosphere and wind simulations of O-type stars;Astronomy & Astrophysics;2024-04

3. Deriving X-Ray Line Profiles for Massive-star Winds from Momentum-conserving Dynamical Working Surface Solutions;The Astrophysical Journal;2024-04-01

4. Stellar winds;Reference Module in Materials Science and Materials Engineering;2024

5. The drivers of massive star evolution;Science;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3