High-precision chemical abundances of Galactic building blocks

Author:

Matsuno TadafumiORCID,Dodd Emma,Koppelman Helmer H.,Helmi Amina,Ishigaki Miho N.,Aoki Wako,Zhao Jingkun,Yuan Zhen,Hattori Kohei

Abstract

Context. The Helmi streams are a kinematic substructure whose progenitor is likely a dwarf galaxy. Although 20 years have passed since their discovery, it is still unclear whether their members are chemically distinguishable from other halo stars in the Milky Way. Aims. We aim to precisely characterize the chemical properties of the Helmi streams. Methods. We analyzed high-resolution, high signal-to-noise ratio spectra for 11 Helmi stream stars through a line-by-line abundance analysis. We compared the derived abundances to homogenized literature abundances of the other halo stars, including those belonging to other kinematic substructures, such as Gaia-Enceladus and Sequoia. Results. Compared to typical halo stars, the Helmi stream members clearly show low values of [X/Fe] in elements produced by massive stars, such as Na and α-elements. This tendency is seen down to metallicities of at least [Fe/H] ∼ − 2.2, suggesting type Ia supernovae already started to contribute to the chemical evolution at this metallicity. We find that the [α/Fe] ratio does not evolve significantly with metallicity, making the Helmi stream stars less distinguishable from Gaia-Enceladus stars at [Fe/H] ≳ − 1.5. The almost constant but low value of [α/Fe] might be indicative of quiescent star formation with low efficiency at the beginning and bursty star formation at later times. We also find extremely low values of [Y/Fe] at low metallicity, providing further support for the claim that light neutron-capture elements are deficient in Helmi streams. While Zn is deficient at low metallicity, it shows a large spread at high metallicity. The origin of the extremely low Y abundances and Zn variations remains unclear. Conclusions. The Helmi stream stars are distinguishable from the majority of the halo stars if homogeneously derived abundances are compared.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3