The effect of spatial sampling on magnetic field modeling and helicity computation

Author:

Thalmann J. K.,Gupta M.,Veronig A. M.

Abstract

Context. Nonlinear force-free (NLFF) modeling is regularly used to indirectly infer the 3D geometry of the coronal magnetic field, which is not otherwise accessible on a regular basis by means of direct measurements. Aims. We study the effect of binning in time-series NLFF modeling of individual active regions (ARs) in order to quantify the effect of a different underlying spatial sampling on the quality of modeling as well as on the derived physical parameters. Methods. We apply an optimization method to sequences of Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) vector magnetogram data at three different plate scales for three solar active regions to obtain nine NLFF model time series. From the NLFF models, we deduce active-region magnetic fluxes, electric currents, magnetic energies, and relative helicities, and analyze those with respect to the underlying spatial sampling. We calculate various metrics to quantify the quality of the derived NLFF models and apply a Helmholtz decomposition to characterize solenoidal errors. Results. At a given spatial sampling, the quality of NLFF modeling is different for different ARs, and the quality varies along the individual model time series. For a given AR, modeling at a certain spatial sampling is not necessarily of superior quality compared to that performed with a different plate scale. Generally, the NLFF model quality tends to be higher for larger pixel sizes with the solenoidal quality being the ultimate cause for systematic variations in model-deduced physical quantities. Conclusions. Optimization-based modeling using SDO/HMI vector data binned to larger pixel sizes yields variations in magnetic energy and helicity estimates of ≲30% on overall, given that concise checks ensure the physical plausibility and high solenoidal quality of the tested model. Spatial-sampling-induced differences are relatively small compared to those arising from other sources of uncertainty, including the effects of applying different data calibration methods, those of using vector data from different instruments, or those arising from application of different NLFF methods to identical input data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3