The Galactic dynamics revealed by the filamentary structure in atomic hydrogen emission

Author:

Soler J. D.ORCID,Miville-Deschênes M.-A.ORCID,Molinari S.,Klessen R. S.ORCID,Hennebelle P.,Testi L.,McClure-Griffiths N. M.ORCID,Beuther H.ORCID,Elia D.ORCID,Schisano E.ORCID,Traficante A.ORCID,Girichidis P.,Glover S. C. O.,Smith R. J.ORCID,Sormani M.ORCID,Treß R.

Abstract

We present a study of the filamentary structure in the neutral atomic hydrogen (H I) emission at the 21 cm wavelength toward the Galactic plane using the 16′.2-resolution observations in the H I 4π (HI4PI) survey. Using the Hessian matrix method across radial velocity channels, we identified the filamentary structures and quantified their orientations using circular statistics. We found that the regions of the Milky Way’s disk beyond 10 kpc and up to roughly 18 kpc from the Galactic center display H I filamentary structures predominantly parallel to the Galactic plane. For regions at lower Galactocentric radii, we found that the H I filaments are mostly perpendicular or do not have a preferred orientation with respect to the Galactic plane. We interpret these results as the imprint of supernova feedback in the inner Galaxy and Galactic rotation and shear in the outer Milky Way. We found that the H I filamentary structures follow the Galactic warp and flaring and that they highlight some of the variations interpreted as the effect of the gravitational interaction with satellite galaxies. In addition, the mean scale height of the filamentary structures is lower than that sampled by the bulk of the H I emission, thus indicating that the cold and warm atomic hydrogen phases have different scale heights in the outer galaxy. Finally, we found that the fraction of the column density in H I filaments is almost constant up to approximately 18 kpc from the Galactic center. This is possibly a result of the roughly constant ratio between the cold and warm atomic hydrogen phases inferred from the H I absorption studies. Our results indicate that the H I filamentary structures provide insight into the dynamical processes shaping the Galactic disk. Their orientations record how and where the stellar energy input, the Galactic fountain process, the cosmic ray diffusion, and the gas accretion have molded the diffuse interstellar medium in the Galactic plane.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference137 articles.

1. Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions

2. From Diffuse Gas to Dense Molecular Cloud Cores

3. Batschelet E. 1981, Circular Statistics in Biology, Mathematics in Biology (Academic Press)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3