Chemical segregation of complex organic O-bearing species in Orion KL

Author:

Tercero B.,Cuadrado S.,López A.,Brouillet N.,Despois D.,Cernicharo J.

Abstract

We investigate the chemical segregation of complex O-bearing species (including the largest and most complex ones detected to date in space) towards Orion KL, the closest high-mass star-forming region. The molecular line images obtained using the ALMA science verification data reveal a clear segregation of chemically related species depending on their different functional groups. We map the emission of 13CH3OH, HCOOCH3, CH3OCH3, CH2OCH2, CH3COOCH3, HCOOCH2CH3, CH3CH2OCH3, HCOOH, OHCH2CH2OH, CH3COOH, CH3CH2OH, CH3OCH2OH, OHCH2CHO, and CH3COCH3 with ∼1.5″ angular resolution and provide molecular abundances of these species toward different gas components of this region. We disentangle the emission of these species in the different Orion components by carefully selecting lines free of blending and opacity effects. Possible effects in the molecular spatial distribution due to residual blendings and different excitation conditions are also addressed. We find that while species containing the C−O−C group, i.e. an ether group, exhibit their peak emission and higher abundance towards the compact ridge, the hot core south is the component where species containing a hydroxyl group (−OH) bound to a carbon atom (C−O−H) present their emission peak and higher abundance. This finding allows us to propose methoxy (CH3O−) and hydroxymethyl (−CH2OH) radicals as the major drivers of the chemistry in the compact ridge and the hot core south, respectively, as well as different evolutionary stages and prevailing physical processes in the different Orion components.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ALMA-IMF;Astronomy & Astrophysics;2024-07

2. The GUAPOS project – V: The chemical ingredients of a massive stellar protocluster in the making;Monthly Notices of the Royal Astronomical Society;2024-03-06

3. Shocking Sgr B2 (N1) with its own outflow;Astronomy & Astrophysics;2024-01

4. Determination of the Branching Ratio of CH3OH + OH Reaction on Water Ice Surface at 10 K;The Astrophysical Journal;2023-12-29

5. Explaining the Chemical Inventory of Orion KL through Machine Learning;The Astrophysical Journal;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3