Detecting isotopologues in exoplanet atmospheres using ground-based high-dispersion spectroscopy

Author:

Mollière P.ORCID,Snellen I. A. G.

Abstract

Context. The cross-correlation technique is a well-tested method for exoplanet characterization, having lead to the detection of various molecules, to constraints on atmospheric temperature profiles, wind speeds, and planetary spin rates. A new, potentially powerful application of this technique is the measurement of atmospheric isotope ratios. In particular D/H can give unique insights into the formation and evolution of planets, and their atmospheres. Aims. In this paper we aim to study the detectability of molecular isotopologues in the high-dispersion spectra of exoplanet atmospheres, to identify the optimal wavelength ranges to conduct such studies, and to predict the required observational efforts – both with current and future ground-based instrumentation. Methods. High-dispersion (R = 100 000) thermal emission spectra, and in some cases reflection spectra, were simulated by self-consistent modeling of the atmospheric structures and abundances of exoplanets over a wide range of effective temperatures. These were synthetically observed with a telescope equivalent to the VLT and/or ELT, and analyzed using the cross-correlation technique, resulting in signal-to-noise ratio predictions for the 13CO, HDO, and CH3D isotopologues. Results. We find that for the best observable exoplanets, 13CO is well in range of current telescopes. We predict it will be most favorably detectable at 2.4 μm, just longward of the wavelength regions probed by several high-dispersion spectroscopic observations presented in the literature. CH3D can be best targeted at 4.7 μm, and may be detectable using 40 m-class telescopes for planets below 600 K in equilibrium temperature. In this case, the sky background becomes the dominating noise source for self-luminous planets. HDO is best targeted at 3.7 μm, and is less affected by sky background noise. 40 m-class telescopes may lead to its detection for planets with Tequ below 900 K. It could already be in the range of current 8 m-class telescopes in the case of quenched methane abundances. Finally, if Proxima Cen b is water-rich, the HDO isotopologue could be detected with the ELT in ~1 night of observing time in its reflected-light spectrum. Conclusions. Isotopologues will soon be a part of the exoplanet characterisation tools. Measuring D/H in exoplanets, and ratios of other isotopes, could become a prime science case for the first-light instrument METIS on the European ELT, especially for nearby temperate rocky and ice giant planets. This can provide unique insights in their history of icy-body enrichment and atmospheric evaporation processes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3