Global mapping of lunar refractory elements: multivariate regression vs. machine learning

Author:

Bhatt M.ORCID,Wöhler C.,Grumpe A.,Hasebe N.,Naito M.

Abstract

Context.The quantitative estimation of elemental concentrations at the spatial resolution of hyperspectral near-infrared (NIR) images of the lunar surface is an important tool for understanding the processes relevant for the origin and evolution of the Moon.Aims.We aim to map the abundances of the elements Fe, Ca, and Mg at a typical accuracy of about 1 wt.% at the spatial resolution of the Moon Mineralogy Mapper (M3) instrument on-board Chandrayaan-1 lunar mission.Methods.The NIR reflectance of the lunar regolith is an integrated response to the presence of refractory elements and soil alteration processes. Our approach was to define a combination of spectral parameters that are robust with respect to the effects of soil maturity. We calibrated the spectral parameters with respect to elemental abundances measured by the Lunar Prospector Gamma Ray Spectrometer (LP GRS) and the Kaguya GRS (KGRS). For this purpose, we compared a classical multivariate linear regression (MLR) approach and the machine learning based support vector regression (SVR) technique applied to M3global observations.Results.The M3-based global elemental maps are consistent in distribution and range with the LP GRS and KGRS elemental maps and do not show artifacts in immature areas such as small fresh craters. The results derived using MLR and SVR are compared to sample-based ground truth data of the Apollo and Luna sample-return sites, where the root-mean-square deviations obtained by the two regression models are similar.Conclusions.The main advantage of the proposed new algorithm is its ability to minimize artifacts due to space-weathering effects. The elemental maps of Mg and Ca provide additional information and reveal structures not always visible in the Fe map. The global elemental abundance maps derived for the fully calibrated M3observations might thus serve as important tools to investigate the lunar geology and evolution.

Funder

German Academic Exchange Service New Delhi

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3