Black hole mass estimates in quasars

Author:

Marziani P.ORCID,del Olmo A.,Martínez-Carballo M. A.,Martínez-Aldama M. L.,Stirpe G. M.,Negrete C. A.,Dultzin D.,D’Onofrio M.,Bon E.,Bon N.

Abstract

Context. The inter-line comparison between high- and low-ionization emission lines has yielded a wealth of information on the structure and dynamics of the quasar broad line region (BLR), including perhaps the earliest unambiguous evidence in favor of a disk + wind structure in radio-quiet quasars. Aims. We carried out an analysis of the C IVλ1549 and Hβ line profiles of 28 Hamburg-ESO high-luminosity quasars and of 48 low-z, low-luminosity sources in order to test whether the width of the high-ionization line C IVλ1549 could be correlated with Hβ and be used as a virial broadening estimator. Methods. We analyze intermediate- to high-S/N, moderate-resolution optical and near-infrared (NIR) spectra covering the redshifted C IVλ1549 and Hβ over a broad range of luminosity log L ∼ 44 − 48.5 [erg s−1] and redshift (0 − 3), following an approach based on the quasar main sequence. Results. The present analysis indicates that the line width of C IVλ1549 is not immediately offering a virial broadening estimator equivalent to Hβ. At the same time a virialized part of the BLR appears to be preserved even at the highest luminosities. We suggest a correction to FWHM(C IVλ1549) for Eddington ratio (using the C IVλ1549 blueshift as a proxy) and luminosity effects that can be applied over more than four dex in luminosity. Conclusions. Great care should be used in estimating high-L black hole masses MBH from C IVλ1549 line width. However, once a corrected FWHM C IVλ1549 is used, a C IVλ1549-based scaling law can yield unbiased MBH values with respect to the ones based on Hβ with sample standard deviation ≈0.3 dex.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3